Selected abstract:

1.        Bermudez A, Reyes C, Guzman F, Vanegas M, Rosas J, Amador R, Rodriguez R, Patarroyo MA, Patarroyo ME. Synthetic vaccine update: applying lessons learned from recent SPf66 malarial vaccine physicochemical, structural and immunological characterization. Vaccine. 2007 May 30;25(22):4487-501.

Nuclear Magnetic Resonance Department, Fundación Instituto de Inmunología de Colombia, Bogota, Colombia.

The SPf66 synthetic malaria vaccine, developed and obtained almost 2 decades ago, represents the first approach towards developing a multi-antigenic, multi-stage synthetic malarial vaccine composed of subunits derived from different Plasmodium falciparum stage proteins. It is shown here that batches 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15 and 16 produced from a few milligrams to kilogram amounts and used in assays on monkeys and humans showed high reproducibility in physicochemical analysis. (1)H NMR two-dimensional studies also revealed high similarity, even in non-oxidized batches. Reproducibility was also high, especially in preclinical studies carried out on Aotus, clinical trials Phase I, IIa and IIb and field-studies carried out in La Tola, Rio Rosario (Colombia), Majadas (Venezuela), La Te (Ecuador), Ifakara (Tanzania) in which there was high antibody titer production, having similar population distribution when done with different batches. These results provide great support for peptide-synthesized vaccines containing minimal epitopes from protection-inducing antigens which have several advantages, such as low cost, safety, reproducibility, stability, being straightforwardly scaled-up from milligram to kilogram amounts; make them the vaccines of choice for the future in a worldwide attempt to scourge diseases such as malaria.


2.         Hawkes M, Kain KC. Advances in malaria diagnosis. Expert Rev Anti Infect Ther. 2007 Jun;5(3):485-95. Review. 

Pediatric Infectious Diseases, University of Toronto, MaRS Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada.

Malaria is a leading cause of mortality worldwide and accurate diagnostic testing for malaria can potentially save an estimated 100,000 lives annually. New technologies have the potential to circumvent limitations of the traditional diagnostic method, light microscopy, which is labor intensive and requires considerable technician expertise. Immunochromatographic tests, which are easy to use in field conditions and relatively inexpensive, offer a potential solution to the problem of malaria overtreatment in resource-poor endemic countries. Assays based on the PCR are highly sensitive, can be used for unambiguous species identification and, thus, may increasingly complement or even replace light microscopy in developed countries. Experimental diagnostics using flow cytometry and mass spectrometry are currently under investigation for high-throughput screening.

Diagnosis, Diagnostics, Immunodiagnosis & Immunodiagnostics:

16418.    Carneiro IA, Drakeley CJ, Owusu-Agyei S, Mmbando B, Chandramohan D. Haemoglobin and haematocrit: is the threefold conversion valid for assessing anaemia in malaria-endemic settings? Malar J. 2007 May 22;6:67.

16419.    Choubisa S L, Choubisa D K, Choubisa L. The ABO Blood Groups and Malaria. J parasit Dis 2005; 29(2): 109-11.

16420.    Cunha BA. Teaching fever aphorisms: Osler revisited. Eur J Clin Microbiol Infect Dis. 2007 May;26(5):371-3.

16421.  Gakhar S K, Gulia M. Anti-mosquito salivary glands antibodies reduce the fecundity of malaria vector Anopheles stephensi (Diptera: Culicidae) and inhibit development of the malaria parasite in mosquito. J Immunology Immunopathology 2004; 6(2): 69-73.

16422.   Griffith KS, Lewis LS, Mali S, Parise ME. Treatment of malaria in the United States: a systematic review. JAMA. 2007 May 23;297(20):2264-77. Review.


16423.    Eisenhut M. Role of folate deficiency in the pathogenesis of retinal and cerebral hemorrhages in cerebral malaria. Am J Trop Med Hyg. 2007 May;76(5):793; author reply 793-4. 

16424.    Hviid L. Adhesion specificities of Plasmodium falciparum-infected erythrocytes involved in the pathogenesis of pregnancy-associated malaria. Am J Pathol. 2007 Jun;170(6):1817-9.

16425.    Magistrado PA, Lusingu J, Vestergaard LS, Lemnge M, Lavstsen T, Turner L, Hviid L, Jensen AT, Theander TG. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria. Infect Immun. 2007 May;75(5):2415-20.


16426.     Aide P, Bassat Q, Alonso PL. Towards an effective malaria vaccine. Arch Dis Child. 2007 Jun;92(6):476-9. Review.

16427.    Arizono N, Nakanihsi K, Horii T, Tanabe K. Progress in the molecular biology of malaria and the immunology of nematode infections. Trends Parasitol. 2007 Apr;23(4):175-81.

16428.    Chen Q. The naturally acquired immunity in severe malaria and its implication for a PfEMP-1 based vaccine. Microbes Infect. 2007 May;9(6):777-83.

16429.    Corradin G. Peptide based malaria vaccine development: personal considerations. Microbes Infect. 2007 May;9(6):767-71.

16430.     Kanoi BN, Egwang TG. New concepts in vaccine development in malaria. Curr Opin Infect Dis. 2007 Jun;20(3):311-6. Review. 

16431.     Lavazec C, Boudin C, Lacroix R, Bonnet S, Diop A, Thiberge S, Boisson B, Tahar R, Bourgouin C. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine. Infect Immun. 2007 Apr;75(4):1635-42.  

16432.    Lozano JM, Patarroyo ME. A rational strategy for a malarial vaccine development. Microbes Infect. 2007 May;9(6):751-60.

16433.    Snounou G, Renia L. The vaccine is dead--long live the vaccine. Trends Parasitol. 2007 Apr;23(4):129-32.   

Chemotherapy, Immunotherapy, Management & Drugs:

16434.    Checkley AM, Whitty CJ. Artesunate, artemether or quinine in severe Plasmodium falciparum malaria? Expert Rev Anti Infect Ther. 2007 Apr;5(2):199-204. Review. 

16435.    Chen LH, Wilson ME, Schlagenhauf P. Controversies and misconceptions in malaria chemoprophylaxis for travelers. JAMA. 2007 May 23;297(20):2251-63. Review.

16436.    Hampton T.  Antimalarial drugs--here and on the horizon. JAMA. 2007 May 23;297(20):2185-6.

16437.    Kumar G, Parasuraman P, Sharma SK, Banerjee T, Karmodiya K, Surolia N, Surolia A.  Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem. 2007 May 31;50(11):2665-75. 

16438.    Kyriacou HM, Steen KE, Raza A, Arman M, Warimwe G, Bull PC, Havlik I, Rowe JA.  In vitro inhibition of Plasmodium falciparum rosette formation by Curdlan sulfate. Antimicrob Agents Chemother. 2007 Apr;51(4):1321-6.

16439.    Ndyomugyenyi R, Magnussen P, Clarke S. Diagnosis and treatment of malaria in peripheral health facilities in Uganda: findings from an area of low transmission in south-western Uganda. Malar J. 2007 Apr 2;6:39.

16440.  Sharma V P. Artemisinin drugs in the treatment of Plasmodium falciparum malaria in India. Curr Sci 2006, 90(10), 1323-4.

16441.    Sowunmi A, Balogun T, Gbotosho GO, Happi CT, Adedeji AA, Fehintola FA. Activities of amodiaquine, artesunate, and artesunate-amodiaquine against asexual- and sexual-stage parasites in falciparum malaria in children. Antimicrob Agents Chemother. 2007 May;51(5):1694-9.

16442.    Takala SL, Smith DL, Thera MA, Coulibaly D, Doumbo OK, Plowe CV. Short report: rare Plasmodium falciparum merozoite surface protein 1 19-kda (msp-1(19)) haplotypes identified in Mali using high-throughput genotyping methods. Am J Trop Med Hyg. 2007 May;76(5):855-9.